If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-10x-77=0
a = 5; b = -10; c = -77;
Δ = b2-4ac
Δ = -102-4·5·(-77)
Δ = 1640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1640}=\sqrt{4*410}=\sqrt{4}*\sqrt{410}=2\sqrt{410}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{410}}{2*5}=\frac{10-2\sqrt{410}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{410}}{2*5}=\frac{10+2\sqrt{410}}{10} $
| 9.38=(0.7+2x)*(0.3+2x) | | 100000=x-(.15x) | | a=50+(5)(1-1) | | 5(g-7)=0 | | 60=1.6x+48 | | 4^x=116 | | (4x+2)/7=3 | | 3z-88=2z-53 | | (4x+2)÷7=3 | | x2+x–156=0 | | 3b=5b+12 | | 23-7x=-47 | | 7b+4=11b | | 2.2x=17.6 | | (5/x-3)+9=2 | | a+20=50 | | 14z=z+26 | | (e+4)X5=40 | | 1/8-4/5w=1/5w+9/8 | | (2x+1)(x+3)=88 | | 60-v=292 | | A=3.14x5^2 | | -35-2n=5+6n | | -6-8v=2v+86 | | z+3/4=8/7 | | 4x=6=24 | | 9p+4.6=12.8+8p | | 2z+5=7z-31 | | 3w+6=9w+30 | | 8y-16=3y+11 | | 8y-16=3y+1 | | 20/35=x/14 |